Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Plant Cell Environ ; 46(12): 3806-3821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635450

RESUMO

Forest disturbances increase the proportion of fast-growing tree species compared to slow-growing ones. To understand their relative capacity for carbon uptake and their vulnerability to climate change, and to represent those differences in Earth system models, it is necessary to characterise the physiological differences in their leaf-level control of water use efficiency and carbon assimilation. We used wood density as a proxy for the fast-slow growth spectrum and tested the assumption that trees with a low wood density (LWD) have a lower water-use efficiency than trees with a high wood density (HWD). We selected 5 LWD tree species and 5 HWD tree species growing in the same location in an Amazonian tropical forest and measured in situ steady-state gas exchange on top-of-canopy leaves with parallel sampling and measurement of leaf mass area and leaf nitrogen content. We found that LWD species invested more nitrogen in photosynthetic capacity than HWD species, had higher photosynthetic rates and higher stomatal conductance. However, contrary to expectations, we showed that the stomatal control of the balance between transpiration and carbon assimilation was similar in LWD and HWD species and that they had the same dark respiration rates.


Assuntos
Água , Madeira , Florestas , Árvores/fisiologia , Fotossíntese/fisiologia , Carbono , Nitrogênio , Folhas de Planta
2.
Glob Chang Biol ; 29(17): 4861-4879, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37386918

RESUMO

For more than three decades, major efforts in sampling and analyzing tree diversity in South America have focused almost exclusively on trees with stems of at least 10 and 2.5 cm diameter, showing highest species diversity in the wetter western and northern Amazon forests. By contrast, little attention has been paid to patterns and drivers of diversity in the largest canopy and emergent trees, which is surprising given these have dominant ecological functions. Here, we use a machine learning approach to quantify the importance of environmental factors and apply it to generate spatial predictions of the species diversity of all trees (dbh ≥ 10 cm) and for very large trees (dbh ≥ 70 cm) using data from 243 forest plots (108,450 trees and 2832 species) distributed across different forest types and biogeographic regions of the Brazilian Amazon. The diversity of large trees and of all trees was significantly associated with three environmental factors, but in contrasting ways across regions and forest types. Environmental variables associated with disturbances, for example, the lightning flash rate and wind speed, as well as the fraction of photosynthetically active radiation, tend to govern the diversity of large trees. Upland rainforests in the Guiana Shield and Roraima regions had a high diversity of large trees. By contrast, variables associated with resources tend to govern tree diversity in general. Places such as the province of Imeri and the northern portion of the province of Madeira stand out for their high diversity of species in general. Climatic and topographic stability and functional adaptation mechanisms promote ideal conditions for species diversity. Finally, we mapped general patterns of tree species diversity in the Brazilian Amazon, which differ substantially depending on size class.


Assuntos
Aclimatação , Vento , Brasil , Floresta Úmida , Biodiversidade
3.
Front Plant Sci ; 13: 825097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401584

RESUMO

With current observations and future projections of more intense and frequent droughts in the tropics, understanding the impact that extensive dry periods may have on tree and ecosystem-level transpiration and concurrent carbon uptake has become increasingly important. Here, we investigate paired soil and tree water extraction dynamics in an old-growth upland forest in central Amazonia during the 2018 dry season. Tree water use was assessed via radial patterns of sap flow in eight dominant canopy trees, each a different species with a range in diameter, height, and wood density. Paired multi-sensor soil moisture probes used to quantify volumetric water content dynamics and soil water extraction within the upper 100 cm were installed adjacent to six of those trees. To link depth-specific water extraction patterns to root distribution, fine root biomass was assessed through the soil profile to 235 cm. To scale tree water use to the plot level (stand transpiration), basal area was measured for all trees within a 5 m radius around each soil moisture probe. The sensitivity of tree transpiration to reduced precipitation varied by tree, with some increasing and some decreasing in water use during the dry period. Tree-level water use scaled with sapwood area, from 11 to 190 L per day. Stand level water use, based on multiple plots encompassing sap flow and adjacent trees, varied from ∼1.7 to 3.3 mm per day, increasing linearly with plot basal area. Soil water extraction was dependent on root biomass, which was dense at the surface (i.e., 45% in the upper 5 cm) and declined dramatically with depth. As the dry season progressed and the upper soil dried, soil water extraction shifted to deeper levels and model projections suggest that much of the water used during the month-long dry-down could be extracted from the upper 2-3 m. Results indicate variation in rates of soil water extraction across the research area and, temporally, through the soil profile. These results provide key information on whole-tree contributions to transpiration by canopy trees as water availability changes. In addition, information on simultaneous stand level dynamics of soil water extraction that can inform mechanistic models that project tropical forest response to drought.

5.
J Environ Manage ; 281: 111835, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33388714

RESUMO

In tropical forests, the spatial distribution of trees may present random, uniform, or grouped patterns that can simultaneously be affected by site and species characteristics. In Central Amazon, topographic gradients and soil water levels drive differences in tree species distribution and in forest dynamics at local scales. Knowing this kind of information can be useful for a forest manager to plan harvesting operations considering the microhabitat preference of merchantable species to reduce the disturbances caused by logging activities. Thus, the spatial variation of tree species is an important information to be considered to support the planning process of forest logging. The present study aims to evaluate the spatial distribution pattern of six species and analyze the relationship between the topography and the population densities and stem size of those species. The study was carried out in a forest production compartment managed by a private company located in the municipality of Silves, state of Amazonas, Brazil. The spatial pattern of the six species was characterized by Ripley's K function. Spatial distribution of diameter at breast height (DBH) and tree density based on kernel incidence calculation were evaluated for topographic classes of slope, elevation, and distance from streams, which were mapped using geographic information systems (GIS). The means of DBH and density of each species were compared among topographic classes by ANOVA and Tukey's test. The results demonstrated the predominance of the aggregate distribution pattern for the six species up to 1105 m (p < 0.01). The tree species Minquartia guianensis Aubl., Protium puncticulatum J.F.Macbr, Manilkara elata (Allemão ex Miq.) Monach, and Caryocar glabrum Aubl. Pers showed an increase in the tree density as the distance from the streams and elevation increased, standing spatially incident on plateaus. Kernel densities of Dinizia excelsa Ducke and Goupia glabra Aubl. were higher closer to streams. The DBH averages followed similar trends of population density for M. guianensis, M. elata, and C. glabrum, and the opposite pattern for D. excelsa, which presented larger individuals in less densely populated areas. P. puncticulatum and G. glabra mean DBH distribution was not affected by the topographic variables analyzed. Topography-related variables showed effects on variations of density and tree size, suggesting that species may be spatially sensitive to the habitat variability available in the study area. In view of logging planning, spatial distribution must be considered in decisions related to cutting down trees and maintenance of remaining trees, especially because some species are more aggregated in smaller scales. Moreover, as topographic variations affect the spatial distribution of size and density, the timber yield will vary spatially in the area, bringing implications for planning logging intensities, roads, skid trails and forest operations. Finally, the procedures and information generated in this study can be reproduced and applied to other species and managed areas to support the planning toward minimizing impacts on the spatial structure of commercial species, as well as to increase the chances of future stock recovery of managed forests in the Amazon.


Assuntos
Florestas , Árvores , Brasil , Ecossistema , Humanos , Solo
6.
Glob Chang Biol ; 27(1): 177-189, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33118242

RESUMO

Tall trees are key drivers of ecosystem processes in tropical forest, but the controls on the distribution of the very tallest trees remain poorly understood. The recent discovery of grove of giant trees over 80 meters tall in the Amazon forest requires a reevaluation of current thinking. We used high-resolution airborne laser surveys to measure canopy height across 282,750 ha of old-growth and second-growth forests randomly sampling the entire Brazilian Amazon. We investigated how resources and disturbances shape the maximum height distribution across the Brazilian Amazon through the relations between the occurrence of giant trees and environmental factors. Common drivers of height development are fundamentally different from those influencing the occurrence of giant trees. We found that changes in wind and light availability drive giant tree distribution as much as precipitation and temperature, together shaping the forest structure of the Brazilian Amazon. The location of giant trees should be carefully considered by policymakers when identifying important hot spots for the conservation of biodiversity in the Amazon.


Assuntos
Ecossistema , Árvores , Biodiversidade , Brasil , Florestas , Clima Tropical
7.
PLoS One ; 15(12): e0243079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33301487

RESUMO

Tree growth and survival differ strongly between canopy trees (those directly exposed to overhead light), and understory trees. However, the structural complexity of many tropical forests makes it difficult to determine canopy positions. The integration of remote sensing and ground-based data enables this determination and measurements of how canopy and understory trees differ in structure and dynamics. Here we analyzed 2 cm resolution RGB imagery collected by a Remotely Piloted Aircraft System (RPAS), also known as drone, together with two decades of bi-annual tree censuses for 2 ha of old growth forest in the Central Amazon. We delineated all crowns visible in the imagery and linked each crown to a tagged stem through field work. Canopy trees constituted 40% of the 1244 inventoried trees with diameter at breast height (DBH) > 10 cm, and accounted for ~70% of aboveground carbon stocks and wood productivity. The probability of being in the canopy increased logistically with tree diameter, passing through 50% at 23.5 cm DBH. Diameter growth was on average twice as large in canopy trees as in understory trees. Growth rates were unrelated to diameter in canopy trees and positively related to diameter in understory trees, consistent with the idea that light availability increases with diameter in the understory but not the canopy. The whole stand size distribution was best fit by a Weibull distribution, whereas the separate size distributions of understory trees or canopy trees > 25 cm DBH were equally well fit by exponential and Weibull distributions, consistent with mechanistic forest models. The identification and field mapping of crowns seen in a high resolution orthomosaic revealed new patterns in the structure and dynamics of trees of canopy vs. understory at this site, demonstrating the value of traditional tree censuses with drone remote sensing.


Assuntos
Conservação dos Recursos Naturais/métodos , Tecnologia de Sensoriamento Remoto/instrumentação , Árvores/crescimento & desenvolvimento , Florestas , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Clima Tropical
8.
Nat Commun ; 11(1): 5515, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168823

RESUMO

The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are broken or uprooted-modes of death with different ecological consequences. Species-level growth rate is the single most important predictor of tree death in Amazonia, with faster-growing species being at higher risk. Within species, however, the slowest-growing trees are at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian region species-level bioclimatic distributional patterns also predict the risk of death, suggesting that these forests are experiencing climatic conditions beyond their adaptative limits. These results provide not only a holistic pan-Amazonian picture of tree death but large-scale evidence for the overarching importance of the growth-survival trade-off in driving tropical tree mortality.


Assuntos
Ecologia , Florestas , Árvores/crescimento & desenvolvimento , Biomassa , Brasil , Dióxido de Carbono , Sequestro de Carbono , Ecossistema , Monitoramento Ambiental , Modelos Biológicos , Modelos de Riscos Proporcionais , Fatores de Risco , Clima Tropical
9.
Glob Chang Biol ; 26(10): 5928-5941, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32525272

RESUMO

Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis, but high surface temperatures suppress this absorption while promoting isoprene emissions. While mechanistic isoprene emission models predict a tight coupling to photosynthetic electron transport (ETR) as a function of temperature, direct field observations of this phenomenon are lacking in the tropics and are necessary to assess the impact of a warming climate on global isoprene emissions. Here we demonstrate that in the early successional species Vismia guianensis in the central Amazon, ETR rates increased with temperature in concert with isoprene emissions, even as stomatal conductance (gs ) and net photosynthetic carbon fixation (Pn ) declined. We observed the highest temperatures of continually increasing isoprene emissions yet reported (50°C). While Pn showed an optimum value of 32.6 ± 0.4°C, isoprene emissions, ETR, and the oxidation state of PSII reaction centers (qL ) increased with leaf temperature with strong linear correlations for ETR (Æ¿ = 0.98) and qL (Æ¿ = 0.99) with leaf isoprene emissions. In contrast, other photoprotective mechanisms, such as non-photochemical quenching, were not activated at elevated temperatures. Inhibition of isoprenoid biosynthesis repressed Pn at high temperatures through a mechanism that was independent of stomatal closure. While extreme warming will decrease gs and Pn in tropical species, our observations support a thermal tolerance mechanism where the maintenance of high photosynthetic capacity under extreme warming is assisted by the simultaneous stimulation of ETR and metabolic pathways that consume the direct products of ETR including photorespiration and the biosynthesis of thermoprotective isoprenoids. Our results confirm that models which link isoprene emissions to the rate of ETR hold true in tropical species and provide necessary "ground-truthing" for simulations of the large predicted increases in tropical isoprene emissions with climate warming.


Assuntos
Butadienos , Hemiterpenos , Dióxido de Carbono , Transporte de Elétrons , Fotossíntese , Folhas de Planta
10.
New Phytol ; 228(1): 106-120, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32452033

RESUMO

Amazonian droughts are increasing in frequency and severity. However, little is known about how this may influence species-specific vulnerability to drought across different ecosystem types. We measured 16 functional traits for 16 congeneric species from six families and eight genera restricted to floodplain, swamp, white-sand or plateau forests of Central Amazonia. We investigated whether habitat distributions can be explained by species hydraulic strategies, and if habitat specialists differ in their vulnerability to embolism that would make water transport difficult during drought periods. We found strong functional differences among species. Nonflooded species had higher wood specific gravity and lower stomatal density, whereas flooded species had wider vessels, and higher leaf and xylem hydraulic conductivity. The P50 values (water potential at 50% loss of hydraulic conductivity) of nonflooded species were significantly more negative than flooded species. However, we found no differences in hydraulic safety margin among species, suggesting that all trees may be equally likely to experience hydraulic failure during severe droughts. Water availability imposes a strong selection leading to differentiation of plant hydraulic strategies among species and may underlie patterns of adaptive radiation in many tropical tree genera. Our results have important implications for modeling species distribution and resilience under future climate scenarios.


Assuntos
Secas , Árvores , Brasil , Ecossistema , Folhas de Planta , Água , Xilema
11.
Phytochemistry ; 175: 112366, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32278887

RESUMO

Tropical forests are acknowledged to be the largest global source of isoprene (C5H8) and monoterpenes (C10H16) emissions, with current synthesis studies suggesting few tropical species emit isoprenoids (20-38%) and do so with highly variable emission capacities, including within the same genera. This apparent lack of a clear phylogenetic thread has created difficulties both in linking isoprenoid function with evolution and for the development of accurate biosphere-atmosphere models. Here, we present a systematic emission study of "hyperdominant" tree species in the Amazon Basin. Across 162 individuals, distributed among 25 botanical families and 113 species, isoprenoid emissions were widespread among both early and late successional species (isoprene: 61.9% of the species; monoterpenes: 15.0%; both isoprene and monoterpenes: 9.7%). The hyperdominant species (69) across the top five most abundant genera, which make up about 50% of all individuals in the Basin, had a similar abundance of isoprenoid emitters (isoprene: 63.8%; monoterpenes: 17.4%; both 11.6%). Among the abundant genera, only Pouteria had a low frequency of isoprene emitting species (15.8% of 19 species). In contrast, Protium, Licania, Inga, and Eschweilera were rich in isoprene emitting species (83.3% of 12 species, 61.1% of 18 species, 100% of 8 species, and 100% of 12 species, respectively). Light response curves of individuals in each of the five genera showed light-dependent, photosynthesis-linked emission rates of isoprene and monoterpenes. Importantly, in every genus, we observed species with light-dependent isoprene emissions together with monoterpenes including ß-ocimene. These observations support the emerging view of the evolution of isoprene synthases from ß-ocimene synthases. Our results have important implications for understanding isoprenoid function-evolution relationships and the development of more accurate Earth System Models.


Assuntos
Hemiterpenos , Butadienos , Monoterpenos , Filogenia
12.
Sci Total Environ ; 714: 136780, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32018968

RESUMO

One-fourth of Brazilian Amazonia is managed for timber production, but only a small portion of active logging sites follow sustainable forest management plans (SFMPs). Amazon forests without SFMPs are susceptible to deforestation because such plans integrate the use of forest products and conservation goals by allowing selective wood extraction following regulations aimed at reducing the long-term impact of logging. However, it remains uncertain whether reduced-impact selective logging typical of SFMPs (17-20 m3 ha-1 yr-1 of 38-70 species) changes forest regeneration, carbon (C) stocks, and nutrient cycling. Here, we tested the hypothesis that litter and soil biogeochemical parameters serve as indicators of sustainable logging as forest regeneration, C stocks, and C-to-nutrient ratios in soil and litter become progressively similar to those of primary forests as time elapses after logging. We used a chronosequence spanning nine years since logging to relate litter and soil (at 0-10, 10-30, 30-50 cm depth) C stocks and 12 and 15 biogeochemical parameters, respectively, as well as canopy cover and tree seedling density (10-150 cm tall) in upland evergreen Amazon forests. In one unlogged and four logged stands sampled three, five, seven, and nine years after logging, we compared 15 permanent plots (three replicated 0.5 ha plots per time-since-logging category). We found that five parameters explained >80% of the variation in soil and litter properties among logged and unlogged stands. Litter parameters were more sensitive to logging than soil parameters, as litter C stocks and C-to-nutrient ratios increased systematically after logging. Canopy cover decreased over time and was ~14% lower nine years after logging. Total seedling density did not change consistently over time but was ~54% higher seven years after logging. Our data suggest that the SFMP guidelines have served the purpose of maintaining soil quality and forest regeneration. Litter and soil parameters can be useful indicators of sustainable forest management in upland evergreen forests in Central Amazonia.


Assuntos
Florestas , Brasil , Poluentes Ambientais , Agricultura Florestal , Solo , Árvores
13.
Nat Ecol Evol ; 3(12): 1754-1761, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31712699

RESUMO

Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity. Amazon forests that contain greater evolutionary diversity and a higher proportion of rare species have higher productivity. While climatic and edaphic variables are together the strongest predictors of productivity, our results show that the evolutionary diversity of tree species in diverse forest stands also influences productivity. As our models accounted for wood density and tree size, they also suggest that additional, unstudied, evolutionarily correlated traits have significant effects on ecosystem function in tropical forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic diversity translates into higher levels of ecosystem function: tropical forest communities with more distantly related taxa have greater wood productivity.


Assuntos
Ecossistema , Madeira , Florestas , Filogenia , Clima Tropical
14.
Front Plant Sci ; 10: 830, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316536

RESUMO

Current climate change scenarios indicate warmer temperatures and the potential for more extreme droughts in the tropics, such that a mechanistic understanding of the water cycle from individual trees to landscapes is needed to adequately predict future changes in forest structure and function. In this study, we contrasted physiological responses of tropical trees during a normal dry season with the extreme dry season due to the 2015-2016 El Niño-Southern Oscillation (ENSO) event. We quantified high resolution temporal dynamics of sap velocity (Vs), stomatal conductance (gs) and leaf water potential (ΨL) of multiple canopy trees, and their correlations with leaf temperature (Tleaf) and environmental conditions [direct solar radiation, air temperature (Tair) and vapor pressure deficit (VPD)]. The experiment leveraged canopy access towers to measure adjacent trees at the ZF2 and Tapajós tropical forest research (near the cities of Manaus and Santarém). The temporal difference between the peak of gs (late morning) and the peak of VPD (early afternoon) is one of the major regulators of sap velocity hysteresis patterns. Sap velocity displayed species-specific diurnal hysteresis patterns reflected by changes in Tleaf. In the morning, Tleaf and sap velocity displayed a sigmoidal relationship. In the afternoon, stomatal conductance declined as Tleaf approached a daily peak, allowing ΨL to begin recovery, while sap velocity declined with an exponential relationship with Tleaf. In Manaus, hysteresis indices of the variables Tleaf-Tair and ΨL-Tleaf were calculated for different species and a significant difference (p < 0.01, α = 0.05) was observed when the 2015 dry season (ENSO period) was compared with the 2017 dry season ("control scenario"). In some days during the 2015 ENSO event, Tleaf approached 40°C for all studied species and the differences between Tleaf and Tair reached as high at 8°C (average difference: 1.65 ± 1.07°C). Generally, Tleaf was higher than Tair during the middle morning to early afternoon, and lower than Tair during the early morning, late afternoon and night. Our results support the hypothesis that partial stomatal closure allows for a recovery in ΨL during the afternoon period giving an observed counterclockwise hysteresis pattern between ΨL and Tleaf.

15.
Acta amaz ; 49(1): 1-10, jan. - mar. 2019. ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1119173

RESUMO

Hydrological processes in forest stands are mainly influenced by tree species composition and morpho-physiological characteristics. Few studies on anatomical patterns that govern plant hydraulics were conducted in tropical forest ecosystems. Thus, we used dye immersion to analyze sapwood area patterns of 34 trees belonging to 26 species from a terra firme forest in the central Brazilian Amazon. The sapwood area was related with wood anatomy and tree size parameters (diameter-at-breast-height - DBH, total height and estimated whole-tree volume). Exponential allometric equations were used to model sapwood area using the biometrical variables measured. Sapwood area traits (cross-section non-uniformity and heartwood visibility) varied significantly among and within species even though all were classified as diffuse porous. DBH was strongly and non-linearly correlated with sapwood area (R 2 = 0.46, P < 0.001), while no correlation was observed with vessel-lumen diameter (P = 0.94) and frequency (P = 0.58). Sapwood area and shape were also affected by the occurrence of vessel obstruction (i.e., tyloses), hollow stems and diseases. Our results suggest that sapwood area patterns and correlated variables are driven by intrinsic species characteristics, microclimate and ecological succession within the stand. We believe that individual tree sapwood characteristics have strong implications over water use, hydrological stand upsaling and biomass quantification. These characteristics should be taken into account (e.g., through a multi-point sampling approach) when estimating forest stand transpiration in a highly biodiverse ecosystem. (AU)


Processos hidrológicos de povoamentos florestais são predominantemente influenciados pela composição de espécies arbóreas e suas características morfo-fisiológicas. No entanto, existem poucos estudos sobre os padrões anatômicos que determinam o sistema hidráulico de plantas em ecossistemas tropicais. Por isso, nosso objetivo foi o de analisar os padrões da área do xilema ativo em 34 árvores de 26 espécies de uma floresta de terra firme na Amazônia central por meio de imersão em solução de corante. A área do xilema ativo foi relacionada a características autoecológicas das espécies, anatomia da madeira e parâmetros de crescimento (diametro à altura do peito - DAP, altura total e volume total). Equações alométricas exponenciais foram utilizadas para ajustar a área do xilema às variáveis medidas. Características do alburno (área transversal não-uniforme e visibilidade do cerne) variaram significativamente entre e dentro de espécies, apesar de que todas as espécies apresentaram vasos difusos. DAP foi fortemente e não-linearmente correlacionado à área do alburno (R 2 = 0,46; P < 0,001), enquanto diâmetro (P = 0,94) e frequência (P = 0.58) de vasos não apresentaram nenhum grau de relacionamento. O tamanho e forma do alburno foram afetados pela ocorrência de obstrução de poros (tilose) e troncos ocos. Estes padrões sugerem que a área do xilema é influenciada por características intrínsicas de cada espécie, microclima e estágio sucessional dentro do povoamento. Nossos resultados implicam que características individuais de árvores podem fortemente influenciar o transporte de água e, consequentemente, os processos hidrológicos e a quantificação de biomassa do povoamento. Essas caracteristicas deveriam ser consideradas (por exemplo, por meio da coleta de amostras da área do xilema ativo ao longo da área transversal) ao estimar-se a transpiração de uma floresta altamente biodiversa.(AU)


Assuntos
Madeira/anatomia & histologia , Xilema/anatomia & histologia , Brasil , Recursos Hídricos , Ecossistema Amazônico
16.
Phytochemistry ; 160: 61-70, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30711572

RESUMO

Volatile terpenoid resins represent a diverse group of plant defense chemicals involved in defense against herbivory, abiotic stress, and communication. However, their composition in tropical forests remains poorly characterized. As a part of tree identification, the 'smell' of damaged trunks is widely used, but is highly subjective. Here, we analyzed trunk volatile monoterpene emissions from 15 species of the genus Protium in the central Amazon. By normalizing the abundances of 28 monoterpenes, 9 monoterpene 'fingerprint' patterns emerged, characterized by a distinct dominant monoterpene. While 4 of the 'fingerprint' patterns were composed of multiple species, 5 were composed of a single species. Moreover, among individuals of the same species, 6 species had a single 'fingerprint' pattern, while 9 species had two or more 'fingerprint' patterns among individuals. A comparison of 'fingerprints' between 2015 and 2017 from 15 individuals generally showed excellent agreement, demonstrating a strong dependence on species identity, but not time of collection. The results are consistent with a previous study that found multiple divergent copies of monoterpene synthase enzymes in Protium. We conclude that the monoterpene 'fingerprint' database has important implications for constraining Protium species identification and phylogenetic relationships and enhancing understanding of physiological and ecological functions of resins and their potential commercial applications.


Assuntos
Burseraceae/química , Monoterpenos/química , Floresta Úmida , Evolução Molecular , Volatilização
17.
Glob Chang Biol ; 25(1): 39-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30406962

RESUMO

Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.


Assuntos
Biodiversidade , Mudança Climática , Florestas , Brasil , Dióxido de Carbono , Ecossistema , Estações do Ano , Árvores/classificação , Árvores/fisiologia , Clima Tropical , Água
18.
Artigo em Inglês | MEDLINE | ID: mdl-30297481

RESUMO

How plants respond physiologically to leaf warming and low water availability may determine how they will perform under future climate change. In 2015-2016, an unprecedented drought occurred across Amazonia with record-breaking high temperatures and low soil moisture, offering a unique opportunity to evaluate the performances of Amazonian trees to a severe climatic event. We quantified the responses of leaf water potential, sap velocity, whole-tree hydraulic conductance (Kwt), turgor loss and xylem embolism, during and after the 2015-2016 El Niño for five canopy-tree species. Leaf/xylem safety margins (SMs), sap velocity and Kwt showed a sharp drop during warm periods. SMs were negatively correlated with vapour pressure deficit, but had no significant relationship with soil water storage. Based on our calculations of canopy stomatal and xylem resistances, the decrease in sap velocity and Kwt was due to a combination of xylem cavitation and stomatal closure. Our results suggest that warm droughts greatly amplify the degree of trees' physiological stress and can lead to mortality. Given the extreme nature of the 2015-2016 El Niño and that temperatures are predicted to increase, this work can serve as a case study of the possible impact climate warming can have on tropical trees.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Assuntos
Mudança Climática , Secas , Florestas , Temperatura Alta , Árvores/fisiologia , Fenômenos Biomecânicos , Brasil , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Estações do Ano , Especificidade da Espécie , Árvores/crescimento & desenvolvimento , Xilema/fisiologia
19.
Glob Chang Biol ; 24(12): 5867-5881, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30256494

RESUMO

Amazon forests account for ~25% of global land biomass and tropical tree species. In these forests, windthrows (i.e., snapped and uprooted trees) are a major natural disturbance, but the rates and mechanisms of recovery are not known. To provide a predictive framework for understanding the effects of windthrows on forest structure and functional composition (DBH ≥10 cm), we quantified biomass recovery as a function of windthrow severity (i.e., fraction of windthrow tree mortality on Landsat pixels, ranging from 0%-70%) and time since disturbance for terra-firme forests in the Central Amazon. Forest monitoring allowed insights into the processes and mechanisms driving the net biomass change (i.e., increment minus loss) and shifts in functional composition. Windthrown areas recovering for between 4-27 years had biomass stocks as low as 65.2-91.7 Mg/ha or 23%-38% of those in nearby undisturbed forests (~255.6 Mg/ha, all sites). Even low windthrow severities (4%-20% tree mortality) caused decadal changes in biomass stocks and structure. While rates of biomass increment in recovering vegetation were nearly double (6.3 ± 1.4 Mg ha-1  year-1 ) those of undisturbed forests (~3.7 Mg ha-1  year-1 ), biomass loss due to post-windthrow mortality was high (up to -7.5 ± 8.7 Mg ha-1  year-1 , 8.5 years since disturbance) and unpredictable. Consequently, recovery to 90% of "pre-disturbance" biomass takes up to 40 years. Resprouting trees contributed little to biomass recovery. Instead, light-demanding, low-density genera (e.g., Cecropia, Inga, Miconia, Pourouma, Tachigali, and Tapirira) were favored, resulting in substantial post-windthrow species turnover. Shifts in functional composition demonstrate that windthrows affect the resilience of live tree biomass by favoring soft-wooded species with shorter life spans that are more vulnerable to future disturbances. As the time required for forests to recover biomass is likely similar to the recurrence interval of windthrows triggering succession, windthrows have the potential to control landscape biomass/carbon dynamics and functional composition in Amazon forests.


Assuntos
Biomassa , Florestas , Árvores , Vento , Brasil , Carbono , Clima Tropical
20.
New Phytol ; 220(1): 111-120, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30067298

RESUMO

Nonstructural carbon (NSC) reserves act as buffers to sustain tree activity during periods when carbon (C) assimilation does not meet C demand, but little is known about their age and accessibility; we designed a controlled girdling experiment in the Amazon to study tree survival on NSC reserves. We used bomb-radiocarbon (14 C) to monitor the time elapsed between C fixation and release ('age' of substrates). We simultaneously monitored how the mobilization of reserve C affected δ13 CO2 . Six ungirdled control trees relied almost exclusively on recent assimilates throughout the 17 months of measurement. The Δ14 C of CO2 emitted from the six girdled stems increased significantly over time after girdling, indicating substantial remobilization of storage NSC fixed up to 13-14 yr previously. This remobilization was not accompanied by a consistent change in observed δ13 CO2 . These trees have access to storage pools integrating C accumulated over more than a decade. Remobilization follows a very clear reverse chronological mobilization with younger reserve pools being mobilized first. The lack of a shift in the δ13 CO2 might indicate a constant contribution of starch hydrolysis to the soluble sugar pool even outside pronounced stress periods (regular mixing).


Assuntos
Carbono/metabolismo , Caules de Planta/fisiologia , Árvores/fisiologia , Atmosfera/química , Brasil , Dióxido de Carbono/metabolismo , Isótopos de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA